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Abstract
We report on progress toward the characterization of a novel phenomenology with potential application as a 

sensitive volume sensing infrared analysis technology involving mature components – a tunable infrared 

laser and a sensitive microphone – with a demonstrated capacity to provide molecular signature information 

while obviating the need for an expensive cryocooled infrared photon detector. 

The phenomenon, which we dub Dynamic Photoacoustic Spectroscopy, or DPAS, is readily implemented 

using simple lasers, optics, and a microphone.  The mid infrared pump laser is tuned to resonant vibrational 

absorption features of the distant chemical species (vapor or aerosol plume) in order to generate a 

photoacoustic report from the target, and swept through the volume at mach 1.  As the photoacoustic report 

from molecular species is emitted isotropically, the successive emitted photoacoustic signals that evolve as 

the laser is swept along a short path containing additional target species also emit their characteristic report, 

and because the pump source is swept at the speed of sound, the acoustic signal emitted along the swept 

path adds in a constructive manner to amplify the resulting signal.  

This collaborative project consists of three main legs which will be discussed: first, the construction and 

characterization of a laboratory bench was performed by MIT-LL; second, the development of a signature 

library and signal phenomenology model is underway led by ECBC; third, innovative optical architectures for 

steering and focusing the source beam, and the resultant acoustic signal are being investigated at the U.S. 

Army Research Laboratory.  Results to date have demonstrated the applicability of the approach to sensing 

chemical threats that present as vapors or aerosols, and further demonstrated the signal to background 

characteristics of the technology.  Efforts are under way now to advance our understanding of the underlying 

physics that enables the observed performance and to develop novel optics that will enable the 

demonstration of an integrated monostatic sensor.
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• Dynamic Laser Photoacoustic Spectroscopy concept

• Concept presented in a DTRA-funded crowdsourcing initiative

• Laser tunes on and off resonant absorption features to generate a thermal pulse when an  

absorber is present

• The laser is swept at the speed of sound, the acoustic signal emitted along the swept path  

adds in a constructive manner to amplify the resulting signal

• Target serves as a gain medium for the amplified signal

• Sensing volume is small (cm) relative to traditional approaches (10’s of m)

• Photoacoustic spectroscopy is a mature science, with volumes of literature published for  

vapor, chemical aerosol, and bioaerosol signatures

• Leverages our institutional knowledge on how to exploit agent infrared signatures for  

detection and identification

• While the sensing system construct is novel and infantile, the components (CO2 laser and  

microphone receivers) are highly mature
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Background signals weak (~ mV’s) relative to gas releases
• Background peak at 10.247 um very likely a water line
• Possible broad absorbance feature (~ 9.5-10.5 um) evident in light rain
• Lower noise collection (450 s integ; red lines) reveals weak spectral 

features above noise
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Results: Summer Outdoor Measurement Campaign

Transportable cart designed for outdoor operation 

Electronics Cart

• Data acquisition computer: multi-channel 

DAQ board (100 KHz dual channel sample; 

1 kHz high-pass RC filter)

• Microphone preamplifier

• Mirror control system

• Optical power meters

• Laser chiller

Also (not shown): 

• 50 kHz bandwidth microphone with multiple 

parabolic collectors

Optical Breadboard

• Tunable CO2 laser (9.2 – 10.8 um)

• Focusing telescope optics (5x mag)

• Rotating mirror (2-40 Hz)

• Trigger reference diode

• Red alignment/visualization beam 

Laser chiller

Laser

DPAS Mobile Data Collection Bench

Towards Remote Sensing with the DPAS Phenomenon

DPAS Performance Modeling
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L=30cm

A singularity is predicted at Mach 1, 
under the optimum DPAS condition 
in which the emitted acoustic energy 
from molecules in the sensing 
volume add coherently.
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Ultimate case

Microphone is only 1m 

from the laser 
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In this modeled scenario, the laser beam is swept at a variable angular frequency such that a Mach 1 

component of motion develops in the direction back to the laser transmitter.  The model predicts that a 

component of the DPAS signal would be detectable in this geometry.

Conclusions
The DPAS phenomenon has been demonstrated on vapor and aerosol targets under laboratory 

conditions, and an outdoor data collection campaign. It revealed a favorable signal to noise ratio for 

the data collection system. Detection limits on the order of the part per trillion vapor sensitivity and 

~36 micrograms/m3 have been demonstrated using the DPAS optical breadboard with a CO2 laser.  

Concepts for a remote sensing architecture are under investigation, with preliminary modeling results 

suggesting that options exist that will direct the DPAS signal back toward the transmitter.
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